

OCR (A) Chemistry A-level

PAG 7: Qualitative Analysis of Organic Functional Groups

This work by PMT Education is licensed under CC BY-NC-ND 4.0

7.1 Identifying Organic Unknowns 1

Part 1: Identification of an alkene

Chemicals provided for the experiment

- Heptane
- Cyclohexane
- Cyclohexene
- Limonene
- Bromine water
- 1. Set up a water bath in a 250 cm³ beaker. Leave this to one side.
- 2. Heat each haloalkane separately under reflux with sodium hydroxide to release the halide ions.
- 3. For each of the haloalkanes, in a separate test tube:
 - a. Add five drops of the refluxed haloalkane solution.
 - b. Add 1 cm3 of ethanol and 1cm3 of silver nitrate solution to the test tube.
 - c. Shake side to side to mix the solution well, and place the test tube into the water bath.
 - d. Record any observations after 3 minutes.

Expected results

Chemical	Colour of bromine water / observation
Heptane	Orange
Cyclohexane	Two separate layer forms, top layer orange and bottom layer water
Cyclohexene	Colourless
Limonene	Colourless

- ➤ Heptane highly flammable; fatal if swallowed; causes skin irritation; may cause drowsiness or dizziness.
- > Cyclohexane highly flammable; fatal if swallowed; causes skin irritation; may cause drowsiness or dizziness.
- > Cyclohexene highly flammable; fatal if swallowed; toxic in contact with skin.
- ➤ Limonene highly flammable; fatal if swallowed; causes skin irritation; causes serious eye damage.
- > Bromine water causes severe skin burns and eye damage; fatal if inhaled.

Part 2: Identification of a haloalkane

Chemicals provided for the experiment:

- 1-chlorobutane
- 1-bromobutane
- 1-iodobutane
- Ethanol
- Aqueous silver nitrate
- 1. Set up a water bath in a 250 cm³ beaker. Leave this to one side.
- 2. Heat each haloalkane separately under reflux with sodium hydroxide to release the halide ions.
- 3. For each of the haloalkanes, in a separate test tube:
 - a. Add five drops of the refluxed haloalkane solution.
 - b. Add 1 cm3 of ethanol and 1cm3 of silver nitrate solution to the test tube.
 - c. Shake side to side to mix the solution well, and place the test tube into the water bath.
 - d. Record any observations after 3 minutes.

Expected results

Name of the chemical	Observations	
1-chlorobutane	White precipitate forms. Slow reaction.	
1-bromobutane	Cream precipitate forms. Quick reaction	
1-iodobutane	Yellow precipitate forms. Very quick reaction	

- > 1-chlorobutane highly flammable.
- > 1-bromobutane highly flammable; causes skin irritation and serious eye irritation; may cause respiratory irritation.
- ➤ 1-iodobutane flammable; harmful if inhaled.
- > Ethanol highly flammable.
- > Silver nitrate solution causes severe skin burns and eye damage.
- Sodium hydroxide causes severe skin burns and eye damage.

Part 3: Identification of Aldehydes

Chemicals provided for the experiment:

- Fehling's reagent
- Tollens' reagent
- Brady's reagent
- Ethanal
- Propanone
- 1. Set up a hot water bath.
- 2. Add 2 mL Fehling's reagent to two separate test tubes and place in a test tube rack.
- 3. Add a few drops of ethanal to one test tube and a few drops of propanone to the other test tube. Warm in the water bath and record any observations.
- 4. Add 2 mL Tollen's reagent to two separate test tubes and place in a test tube rack.
- 5. Add a few drops of ethanal to one test tube and a few drops of propanone to the other test tube. Warm in the water bath and record any observations.
- 6. Add 2 mL Brady's reagent to two separate test tubes and place in a test tube rack.
- 7. Add a few drops of ethanal to one test tube and a few drops of propanone to the other test tube. Record any observations.

Expected results

	Ethanal	Propanone
Fehling's reagent	Brick red precipitate forms	No precipitate, solution remains deep blue
Tollens' reagent	Silver mirror forms on the surface of the test tube	No change
Brady's Reagent	Orange precipitate forms.	Orange precipitate forms.

- > Fehling's Reagent causes skin irritation and serious eye damage.
- > Tollen's Reagent may cause skin and eye irritation; explosive.
- > Brady's Reagent flammable; harmful if swallowed; causes serious eye irritation.
- ➤ Ethanal highly flammable.
- > Propanone highly flammable; causes serious eye irritation; may cause drowsiness or dizziness.

Part 4: Identification of alcohols

Chemicals provided for the experiment:

- Butan-1-ol
- Butan-2-ol
- 2-methyl-propan-2-ol
- Phenol
- Acidified potassium dichromate solution
- Bromine water
- 1. Heat the butan-1-ol under reflux with the acidified potassium dichromate and make a note of any observations.
- 2. Repeat for butan-2-ol and 2-methyl-propan-2-ol.
- 3. Add bromine water to a sample of phenol and note any changes.

Expected results

Compound	Classification of alcohol	Observation
Butan-1-ol	Primary	Colour change from orange to green
Butan-2-ol	Secondary	Colour change from orange to green
2-methylpropan-2-ol	Tertiary	Solution remains orange

Phenol causes a solution of bromine water to change from orange to colourless and a white precipitate will form.

- > Butan-1-ol flammable; harmful if swallowed; causes skin irritation and serious eye damage; may cause respiratory irritation; may cause drowsiness or dizziness.
- > Butan-2-ol flammable; causes serious eye damage; may cause respiratory irritation; may cause drowsiness or dizziness.
- > 2-methylpropan-2-ol highly flammable; causes serious eye irritation; harmful if inhaled.
- ➤ Phenol Toxic if swallowed; toxic if inhaled; toxic in contact with skin; causes severe skin burns and eye damage; can cause damage to organs and genetic defects.
- ➤ Potassium dichromate Oxidizer; toxic if swallowed; fatal if inhaled; causes severe skin burns and eye damage; can cause damage to organs, cancer, and genetic defects; environmental hazard.

Part 5: Identification of carboxylic acids

Chemicals provided for the experiment:

- Ethanoic acid
- Dilute sodium carbonate solution
- Limewater
- 1. Place a test tube containing limewater in a test tube rack, with the delivery tube in the solution.
- 2. In a second test tube, add a few mL of sodium hydrogen carbonate solution, then add a few mL of ethanoic acid and immediately insert the bung attached to the delivery tube.
- 3. Bubble the gaseous product from the delivery tube through the limewater.

Expected Results

The ethanoic acid reacts with the sodium hydrogen carbonate, producing carbon dioxide. Effervescence will be observed. CO₂ turns limewater cloudy.

- > Limewater causes skin irritation and serious eye damage.
- > Ethanoic acid flammable, causes severe skin burns and eye damage.

